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Figure 1. InsetGAN applications. Our full-body human generator is able to generate reasonable bodies at state-of-the-art resolution
(1024×1024px) (a). However, some artifacts appear in the synthesized results, most visibly in extremities and faces. We make use of
a second, specialized generator to seamlessly improve the face region (b). We can also use a given face as an input for unconditional
generation of bodies (c). Furthermore, we can select both specific faces and bodies and compose them in a seamlessly merged output (d).

Abstract

While GANs can produce photo-realistic images in ideal
conditions for certain domains, the generation of full-body
human images remains difficult due to the diversity of iden-
tities, hairstyles, clothing, and the variance in pose. In-
stead of modeling this complex domain with a single GAN,
we propose a novel method to combine multiple pretrained
GANs, where one GAN generates a global canvas (e.g., hu-
man body) and a set of specialized GANs, or insets, focus
on different parts (e.g., faces, shoes) that can be seamlessly
inserted onto the global canvas. We model the problem
as jointly exploring the respective latent spaces such that
the generated images can be combined, by inserting the
parts from the specialized generators onto the global can-
vas, without introducing seams. We demonstrate the setup
by combining a full body GAN with a dedicated high-quality
face GAN to produce plausible-looking humans. We evalu-
ate our results with quantitative metrics and user studies.

1. Introduction
Generative adversarial networks (GANs) have emerged

as a very successful image generation paradigm. For exam-
ple, StyleGAN [14] is now the method of choice for creating

near photorealistic images for multiple classes (e.g., human
faces, cars, landscapes). However, for classes that exhibit
complex variations, creating very high quality results be-
comes harder. For example, full-body human generation
still remains an open challenge, given the high variability
of human pose, shape, and appearance.

How can we generate results at both high resolution and
high quality? One approach is to break the target image
into tiles and train a GAN to sequentially produce them [7].
Such methods, however, are unsuited for cases where the
coupling between the (object) parts are nonlocal and/or can-
not easily be statistically modeled. An alternate approach is
to aim for collecting very high resolution images and train
a single GAN, at full resolution. However, this makes the
data collection and training tasks very expensive, and varia-
tions in object configuration/poses cause further challenges.
To the best of our knowledge, neither such a high resolution
dataset, nor a corresponding high resolution GAN architec-
ture has been published.

We propose InsetGAN towards solving the above prob-
lems. Specifically, we propose to combine a generator to
provide the global context in the form of a canvas, and a set
of specialized part generators that provide details for dif-
ferent regions of interest. The specialized results are then
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Figure 2. InsetGAN Pipeline. Given two latents wA and wB , along with pretrained generators GA and GB , that generate two images
IA := GA(wA) and IB := GB(wB), respectively, we design a pipeline that can optimize either only wA (a), or iteratively optimize both
wA and wB (b) in order to achieve a seamless output composition of face and body. We use a set of losses Lcoarse and Lborder to describe
the conditions we want to minimize during optimization. On the right, we show that given an input body, mere copy and pasting of a
target face yields boundary artifacts. We show an application of one-way optimization (top right) and two-way optimization (bottom right)
to create a seamlessly merged result. Note that when the algorithm can optimize in both inset-face and canvas-body generator spaces, it
produces more natural results at the seam boundary – notice how the hair and skin tone blend from the head to the body region. The joint
optimization is challenging as the bounding box B(IA) is conditioned on the variable wA.

pasted, as insets, on to the canvas to produce a final gen-
eration. Such an approach has multiple advantages: (I) the
canvas GAN can be trained on medium quality data, where
the object parts are not necessarily aligned. Although this
results in the individual parts in the canvas being somewhat
blurry (e.g., fuzzy/distorted faces in case of human bodies),
this is sufficient to provide global coordination for later spe-
cialized parts to be inserted; (II) the specialized parts can
be trained on part-specific data, where consistent alignment
can be more easily achieved; and (III) different canvas/part
GANs can be trained at different resolutions, thus lower-
ing the data (quality) requirements. CollageGAN [20] has
explored a similar idea in a conditional setting. Given a
semantic map which provides useful shape and alignment
hints, they create a collage using an ensemble of outputs
from class-specific GANs [20]. In contrast, our work fo-
cuses on the unconditional setting, which is more challeng-
ing since our multiple generators need to collaborate with
one another to generate a coherent shape and appearance
together without access to a semantic map for hints.

The remaining problem is how to coordinate the canvas
and the part GANs, such that adding the insets to the can-
vas does not reveal seam artifacts at the inset boundaries.
This aspect is particularly challenging when boundary con-
ditions are nontrivial and the inset boundaries themselves
are unknown. For example, a face, when added to the body,
should have consistent skin tone, clothing boundaries, and
hair flow. We solve the problem by jointly seeking latent
codes in (pretrained) canvas and part GANs such that the fi-
nal image, formed by inserting the part insets on the canvas,
does not exhibit any seams. In this paper, we investigate this
problem in the context of human body generation, where the

human faces are created by a face-specific GAN.
We evaluate InsetGAN on a custom dataset, compare

with alternative approaches, and evaluate the quality of the
results with quantitative metrics and user studies. Fig. 1
shows human body generation applications highlighting
both seamless results, across face insets, as well as having
diversity of solutions across face insertion boundaries.

Contributions. (1) We propose a multi-GAN optimiza-
tion framework that jointly optimizes the latent codes of two
or more collaborative generators such that the overall com-
posed result is coherent and free of boundary artifacts when
the generated parts are inserted as insets into the generated
canvas. (2) We demonstrate our framework on the highly
challenging full-body human generation task and propose
the first viable pipeline to generate plausible-looking hu-
mans unconditionally at 1024×1024px resolution.

2. Related Work

Unconditional Image Generation via Generative Ad-
versarial Networks (GANs) [8] has shown a lot of promise
in recent years. In this context, the StyleGAN architec-
ture was developed over a sequence of papers [11–14]
and is widely considered the state of the art for synthe-
sizing individual object classes. For class-conditional im-
age generation on the ImageNet dataset, BigGAN [5] is of-
ten the architecture of choice. In our work, we are build-
ing on StyleGAN2-ADA, since this architecture yields bet-
ter FID [9] and Precision&Recall [17] scores on our do-
main when compared to StyleGAN3. In addition, gener-
ating complete human body images using StyleGAN2 is a
baseline we would like to improve upon in our work.



Figure 3. Unconditional generation results. Examples are created using our adaptive truncation approach (described in the supplementary
material) and are cropped horizontally. At first glance, the results look realistic, but face regions show noticeable artifacts (please zoom).

Image Outpainting refers to image completion prob-
lems where the missing pixels are not surrounded by avail-
able pixels. Recent papers build on the ideas to use gen-
erative adversarial networks [29] and the explicit modeling
of structure [19, 34]. Though these two papers specialize
in human bodies, we find that the GAN architecture Co-
ModGAN [33] has even more impressive results for image
outpainting (see the comparison in Section 5).

Conditional Generation of Full-Body Humans has
two possible advantages. First, the conditional generation
enables more control. Second, conditional generation can
help in controlling the variability and improve the visual
quality. In the context of humans, a natural idea is to condi-
tion the generation on the human pose [4, 15, 16, 22, 23, 26,
28] or segmentation information [10].

As many conditional architectures are not able to handle
the same high resolution (1024×1024px) of unconditional
StyleGAN, an alternative to developing new architectures
is conditional embedding into an unconditional generator’s
latent space. Two approaches used in this context are Style-
GAN embedding using optimization [1, 2] or StyleGAN
embedding using an encoder architecture [3, 25, 30]. Our
work also makes use of embedding algorithms.

3. Methodology
We propose a method for the unconditional generation

of full-body human images using one or more independent
pretrained unconditional generator networks. Depending
on the desired application and output configuration, we de-
scribe different ways to coordinate the multiple generators.

3.1. Full-Body GAN

The naive approach to generate a full-body human im-
age is to use a single generator trained on tens of thousands
of example humans (see Section 4 about the dataset). We
adopt the state-of-the-art StyleGAN2 architecture proposed
by Karras et al. [11]. Most previous full-body generation or
editing work [4, 18, 20, 35] generate images at 256×256px
or 512×512px resolution. We made the first attempt to un-
conditionally generate full-body humans at 1024×1024px
resolution. Due to the complex nature of our target do-
main, the results generated by a single GAN sometimes ex-
hibit artifacts such as weirdly-shaped body parts and non-

photorealistic appearance. These artifacts are most visi-
ble in faces and extremities, as shown in Fig. 1(a). Due
to the vast diversity of human poses and appearances and
the associated alignment difficulty, hands and feet appear
in many possible locations in the training images, making
them harder for a single generator to learn. Faces are espe-
cially hard since we humans are ultra-sensitive to artifacts in
these areas. They therefore deserve dedicated networks and
special treatment. Fig. 3 shows a variety of unconditional
generation results. Our results exhibit correct human body
proportions, consistent skin tones across face and body, in-
teresting garment variations and plausible-looking acces-
sories (e.g. handbags and sunglasses) whereas artifacts can
be present when viewed in detail.

3.2. Multi-GAN Optimization

To improve the problematic regions generated by the
full-body GAN, we use other generators trained on images
of specific body regions to generate pixels to be pasted, as
insets, into the full-body GAN result. The base full-body
GAN and the dedicated body part GANs can be trained us-
ing the same or different datasets. In either case, the ad-
ditional network capacity contained in the multiple GANs
can better model the complex appearance and variability of
the human bodies. As a proof of concept, we show that a
face GAN trained with the face regions cropped from our
full-body training images can be used to improve the ap-
pearance of the body GAN results. Alternatively, we can
also leverage a face generator trained on other datasets such
as FFHQ [14] for face enhancement as well. Similarly, spe-
cialized hands or feet generators can also be used in our
framework to improve other regions of the body. We show
that we can also use multiple part generators together in a
multi-optimization process, as depicted in Fig. 4.

The main challenge is how to coordinate multiple uncon-
ditional GANs to produce pixels that are coherent with one
another. In our application, we have a GA that generates
the full-body human where IA := GA(wA) and another
GB that generates a sub-region or inset within the human
body where IB := GB(wB). In order to coordinate the spe-
cialized part GAN with the global/canvas GAN, we need a
bounding box detector to identify the region of IA that cor-
responds to the region our part GAN generates. We crop
IA with the detected bounding box and denote the cropped



Figure 4. Two Insets. These results are improved using a ded-
icated shoe generator trained on shoe crops from our full-body
humans, and also using our face generator. All three generators
(full-body canvas and two insets) are jointly optimized to produce
a seamless coherent output. The circular closeups show the shoes
before (top) and after (bottom) improvement (please zoom).

pixels as B(IA). The problem of inserting a separately-
generated part IB into the canvas IA is equivalent to finding
a latent code pair (wA,wB) such that the respective images
IA and IB can be combined without noticeable seams in
the boundary regions of B(IA) and IB . To generate the fi-
nal result, we directly replace the original pixels inside the
bounding box B(IA) with the generated pixels from IB ,

min
wA,wB

∫
Ω

L(GA(wA),GB(wB)) (1)

where, Ω := B(GA(wA)) and, with slight abuse of notation,
L captures the loss both along the boundary of Ω measuring
seam quality and inside the region Ω measuring similarity of
IA and IB inside the respective faces. The full optimization
is complex as the region of interest Ω depends on wA.

Our multi-GAN optimization framework can support
various human generation and editing applications. De-
pending on the application scenario, we optimize either wA

or wB or jointly optimize both for the best results.
Optimization Objectives. When optimizing the latent

codes wA, wB or both, we consider multiple objectives:
(I) the face regions generated by the face GAN and body
GAN should have similar appearance at a coarse scale so
that when the pixels generated by the face GAN are pasted
onto the body GAN canvas, attributes match (e.g., the skin
tone of the face matches that of the neck); (II) the boundary
pixels around the face crops match up so that a simple copy-
and-paste operation does not result in visible seams; and
(III) the final composed result looks realistic. To match the
face appearance, we downsample the face regions and cal-
culate a combination of L1 and perceptual loss [32] Llpips:

Lcoarse := λ1L1(I
↓
A, I

↓
B) + λ2Llpips(I

↓
A, I

↓
B), (2)

where I↓A = D64(B(IA)) and I↓B = D64(IB) and D64

refers to downsampling the image to 64×64px resolution.
For the boundary matching, we also apply a L1 and per-

ceptual loss to the border pixels at full resolution:

Lborder := λ3L1(E8(B(IA)), E8(IB))+
λ4Llpips(E8(B(IA)), E8(IB))

(3)

Figure 5. Face Refinement. Given generated humans, we use a
dedicated face model trained on the same dataset to improve the
quality of the face region. We jointly optimize both the face and
the human latent codes so that the two generators coordinate with
each other to produce coherent results. The two inset face crops
show the initial face generated by the body GAN (bottom) and the
final face improved by dedicated face GAN (top).

where Ex(I) is the border region of I of width x pixels.
To maintain realism during the optimization, we also add

two regularization terms:

Lreg := λr1∥w∗ −wavg∥+ λr2

∑
i

∥δi∥ (4)

The first term prevents the optimized latent code from de-
viating too far from the average latent. We compute wavg

by randomly sampling a large number of latents in Z space,
mapping them to W space, and computing the average. The
second term is to regularize the latent code in w+ latent
space. During StyleGAN2 inference, the same 512 dimen-
sional latent code w is fed into each of the n generator lay-
ers (n is dependent on the output resolution). Many GAN
inversion methods optimize in this n×512 dimensional w+

latent space [31] instead of the 512 dimensional w latent
space. We follow recent work to decompose the w+ latent
into a single base w∗ latent and n offset latents δi. The
latent used for layer i is w+ δi. We use the L2 norm as reg-
ularizer to ensure that the δis remain small. Based on our
visual analysis of the results, we use larger weights for the
body generator than the face generator for this regularizer.

We mix and match the various losses depending on the
specific application at hand.

Face Refinement versus Face Swap. Given a ran-
domly generated human body GA(wA), we can keep wA

fixed and optimize for wB such that GB(wB) looks similar
to B(GA(wA)) at a coarse scale and matches the boundary
pixels at a fine scale (Fig. 2 top right). We have:

min
wB

(Lcoarse + Lborder) (5)

While this almost produces satisfactory results, boundary
discontinuities show up at times. For further improvement,



Figure 6. Multimodal Body Generation for an Existing Face.
For each face generated by the pretrained FFHQ model (middle
column), we use joint optimization to generate three different bod-
ies while maintaining the facial identities from the input faces.

we can optimize both wA and wB so that both generators
coordinate with each other to generate a coherent image free
of blending artifacts (Fig. 2 bottom right). To keep the body
appearance unchanged during the optimization of wA, we
introduce an additional loss term:

Lbody := λ5L1(R
O(IA), R

O(Iref ))+

λ6Llpips(R
O(IA), R

O(Iref ))
(6)

where Iref is the input reference body generated by GA that
should remain unchanged during the optimization, RO de-
fines the body region outside of the face bounding box. We
also use the mean latent regularization term Lreg to prevent
generating artifacts. The final objective function becomes:

min
wA,wB

(Lcoarse + Lborder + Lreg + Lbody) (7)

Fig. 1(b) and Fig. 5 show face refinement results using a
dedicated face model trained on faces cropped from the
same data used for training the body generator. Our refine-
ment results when using the pretrained FFHQ face model
exhibit similar visual quality (see supplementary material).

Body Generation for an Existing Face. Given a real
face or a randomly-generated face GB(wB), we can keep
wB fixed and optimize for wA such that GA(wA) produces
a body that looks compatible with the input face in terms of
pose, skin tone, gender, hair style, etc. In practice, we find
that to best maintain boundary continuity, especially when
generating bodies to match faces of complex hair styles, it
is often to discourage large changes in wB , such that the

face identity is mostly preserved but the boundary and back-
ground pixels can be slightly adjusted to make the optimiza-
tion of wA easier. To preserve the face identity during the
optimization, we use an additional face reconstruction loss:

Lface := λ7L1(R
I(IB), R

I(Iref ))+

λ8Llpips(R
I(IB), R

I(Iref ))
(8)

where RI defines the interior region of the face crop and Iref

denotes the referenced input face. For more precise control,
face segmentation can be used instead of bounding boxes.
Our objective function becomes:

min
wA,wB

(Lcoarse + Lborder + Lreg + Lface) (9)

With different initialization for wA, we can generate multi-
ple results per face as shown in Fig. 6. Note that our model
can generate diverse body appearances compatible with the
input face. The generated body skin tone generally match
the input face skin tone (e.g., the women of African descent
in the top and bottom rows of Fig. 6). Fig. 1(c) shows an-
other example.

Face Body Montage. We can combine any real or
generated face with any generated body to produce a photo
montage. With a real face, we need to first encode it into
the latent space of GB as wB using an off-the-shell en-
coder [30]. Similarly, a real body could be encoded into
the latent space of GA, but due to the high variability of
human bodies it is difficult to achieve a low reconstruction
error. All montage results are created from synthetic bodies
generated by GB . We use the following objective function:

min
wA,wB

(Lcoarse + Lborder + Lreg + Lface + Lbody) (10)

Fig. 7 shows the result of combining faces (top row) gen-
erated by the pretrained FFHQ model with bodies (leftmost
column) generated by our full-body generator GA. With mi-
nor adjustments of both the face and body latent codes, we
achieve composition results that are coherent and identity-
preserving. While we do not have any explicit loss encour-
aging skin tone coherence, given faces with different skin
tones, our joint optimization slightly adjusts the skin tone
of the body’s neck and hand pixels to minimize appearance
incoherence and boundary discrepancy in the final results.
Fig. 1(d) shows two more examples. Our joint optimization
is able to slightly adjust the shoulder region of the lady to
extend her hair to naturally rest on her right shoulder. The
rightmost column in Fig. 2 shows the improvement the joint
optimization makes to the final result quality (bottom) com-
pared to only optimizing wB given an input body (top).

Optimization Details. While the difference is subtle,
we observe a slightly better visual performance when using
L1 over L2 losses. We apply many of our losses to down-
sampled versions of the images D64(B(IA)) and D64(IB)



Figure 7. Face Body Montage. Given target faces (top row) gen-
erated by the pretrained FFHQ model and bodies (leftmost column)
generated by our full-body human generator, we apply joint latent
optimization to find compatible face and human latent codes that
can be combined to produce coherent full-body humans. Notice
how face and skin colors get synchronized, and zoom in to ob-
serve the (lack of) seams around face insets.

to allow for more flexibility during optimization and to re-
duce the risk of overfitting to artifacts from the source im-
age (e.g., the body GAN’s face region, which lacks realistic
high-frequency details) in a strategy similar to PULSE [24].

One challenge in the joint optimization of wA and wB is
that the boundary condition Ω depends on the variable wA.
We address this by alternately optimizing for wA and wB ,
and reevaluating the boundary after each update of wA. We

Figure 8. Multimodal Face Improvement. To improve humans
generated by a full-body model trained on DeepFashion, we use
the pretrained FFHQ model to synthesize a variety of seamlessly
merged result faces that all look compatible with the input body.

stop the process when the updates converge.
Optimization Initialization. The default choice of ini-

tialization for either wA or wB is their corresponding av-
erage latent vector wavg. This typically leads to reasonable
results quickly. However, it is desirable to generate a vari-
ety of results for applications like finding matching bodies
IA for an input face IB . In this case, we start from trun-
cated latent codes wtrunc = wrand ∗ (1−α)+wavg ∗α. Due
to the introduced randomness and the interpolation with the
average latent code, we can generate diverse yet realistic re-
sults (see Fig. 6). In Fig. 8, given humans generated by our
full-body model trained on DeepFashion, we use the pre-
trained FFHQ face model to swap in multiple better looking
faces. Different initialization of wB yields different results.
In the cases where either the face region or the body region
should remain fixed during the joint optimization of both
latent codes, we initialize the optimization with the latent
code initially used to generate the synthetic reference im-
age or the latent code encoded from a real image.

4. Dataset and Implementation

We curate a proprietary dataset of 83,972 high-quality
full-body human photographs at 1024×1024px resolution.
These images stem from a dataset of 100,718 diverse pho-
tographs in the wild purchased from a third-party data ven-
dor. The dataset includes hand-labeled ground-truth seg-
mentation masks. We apply a human pose-detection net-
work [6] on the original images and filter out those that
contain extreme poses causing pose detection results to have
low confidence. Fig. 9 shows some sample training images.

Feature alignment plays an important role in high-quality
image generation, as can be seen in the qualitative dif-
ference of models trained on FFHQ data vs. other face
datasets. Therefore, we carefully align the humans using
their pose skeletons. We define an upper body axis based
on the position of the neck and hip joints. We position hu-
mans so that the upper body axis is aligned in the center
of the image. As the variance in perspective and pose is
very large, choosing the appropriate scale for each person
within the context of their image frame is challenging. We



Figure 9. Full-body Human Dataset. We create a dataset from photographs of humans in the wild. The images are automatically
preprocessed, aligned, and cropped to 1024×1024px resolution using the ground-truth segmentation masks and detected pose skeletons.

scale the humans based on their upper-body length and then
evaluate the extent of the face region as defined by the seg-
mentation mask. If the face length is smaller (larger) than
a given minimum (maximum) value, we rescale so that the
face length is equal to the minimum (maximum).

Lastly, we enlarge the backgrounds using reflection
padding and heavily blur them using a Gaussian kernel of
size 27 to focus the generator capacity on modeling only
the foreground humans. The huge variation in background
appearance in these in-the-wild photos poses extreme chal-
lenges for the GAN, especially with limited data quantity.

We also considered completely removing the back-
ground, but did not do it for two reasons: (1) Human-
labeled segmentation masks are still imperfect around
boundaries and (2) We observe that current GAN architec-
tures do not handle large areas of uniform color well.

We also show our method on DeepFashion [21], which
consists of 66,607 fashion photographs, including garment
pieces and garments on humans. Using the same alignment
strategy as above, we extract 10,145 full-body images at
1024×768 resolution. Since the backgrounds are already
uniform, we do not blur them.

Training Details We trained our main human body
generator network at 1024×1024px resolution using
the StyleGAN2-ADA architecture using all augmentation
schemes proposed in the paper [11] for 28 days and 18 hours
on 4 Titan V GPUs, using a batch size of 4, processing a to-
tal of 42M images. After experimenting with different R1 γ
values between 0.1 and 20, we chose a value of 13. Simi-
larly, we trained our DeepFashion human generator network
at 1024×768px resolution for 9 days on 4 v100 GPUs, us-
ing a batch size of 8, processing a total of 18M images. We
use a pretrained FaceNet [27] to detect and align the bound-
ing boxes of the face regions in our generated bodies and
faces. The running time of our optimization algorithm for
jointly optimizing two generator latents at 1024×1024px
output resolution is about 75 seconds on a Titan RTX GPU.
If GB has a smaller resolution of 256×256px, the optimiza-
tion time decreases to around 60 seconds.

5. Evaluation and Discussion

Quantitative Evaluation. We follow the standard prac-
tice to calculate FID (Fréchet Inception Distance) to mea-
sure how closely our generated full-body results follow the
training distribution. Many previous papers including Co-

ModGAN point out that FID statistics are noisy and do not
correlate well with human perception about visual quality.
We also observe that FID is more sensitive to result diver-
sity than quality and increases significantly as we truncate
the generated results, which reduces variation but is crucial
for generating natural looking images with fewer artifacts.
While the FID for untruncated results is 13.96, it rises to
26.67 for t=0.7 and 71.90 for t=0.4 (more truncation). We
compare FID values of several alternative approaches for
our face refinement application. We use two different trun-
cation settings, t=0.7 and t=0.4 and evaluate on both the
full-body images and image crops that include the refined
face and the boundary pixels after copy&pasting.

t=0.7 t=0.4
FID Score (lower is better) body face body face

Unconditional Generation 26.67 27.14 71.90 66.61
InsetGAN 25.33 31.61 69.58 61.57

The differences in FID are small. This indicates that the
face refinement using joint optimization does not modify
the distribution learned by the unconditional generator and
therefore does not decrease the result diversity. However,
large differences in perceptual quality are still possible de-
spite similar FID values as demonstrated in our user study.

Baseline Comparison. To the best of our knowledge,
no other prior work generates full-body humans uncondi-
tionally or inpaints/outpaints humans at 1024×1024px res-
olution without requiring conditioning other than reference
pixels of the known regions. Previous works have attempted
to generate plausible human bodies, but they require seg-
mentation masks as input [19, 20]. The best state-of-the-
art method that can be repurposed for our body genera-
tion and face refinement applications is CoModGAN [33].
Fig. 10 shows that our InsetGAN (top right) outperforms
CoModGAN (bottom right) in replacing the initial face gen-
erated by our body generator (left). We trained CoModGAN
with square (with small random offsets for generalization)
holes around faces using the official implementation, train-
ing data and default parameters for two weeks on four V100
GPUs. Similarly, we train CoModGAN with rectangular
holes around the bodies to compare with our InsetGAN for
the body generation task. In Fig. 11, we show the two best
results of CoModGAN obtained by using several random
initializations per input face. Compared to our results in
Fig. 6, CoModGAN produces less realistic and diverse im-
age completions.



Figure 10. Face Refinement Comparison with Co-
ModGAN [33]. Given generated humans (left), InsetGAN
improves the face quality (top right), producing more convincing
results than CoModGAN (bottom right). CoModGAN results are
generated by defining rectangular holes around the face regions.

User Study. We performed a user study to better evalu-
ate the perceptual quality of our method. We aggregated
500 generated humans from our full-body generator and
500 random training images. We then applied either our
joint optimization method or CoModGAN to replace the
face regions in the generated samples. We showed several
sets of image pairs to volunteer participants on Amazon Me-
chanical Turk and asked them to pick “in which of the two
images the person looks more plausible and real”. Per im-
age pair, 5 votes were collected and aggregated towards the
majority votes. The study shows that in 12.4% of image
pairs, users prefer our unrefined results over the training im-
ages when given only 1 second to look at each image. This
shows that our results get the basic human proportion and
pose right, being able to confuse people about being real.
In 98% of cases, users prefer our joint optimization results
over the unrefined images. In contrast, only 7% of the Co-
ModGAN samples were picked over the unrefined images,
which is consistent with our observation from Fig. 10.

Limitations. Our work has multiple limitations that
could benefit from improvements. First, the joint optimiza-
tion approach may change details such as hair style, neck-
line or clothing details. In many cases the changes are
minor, but in some cases changes can be larger, e.g. the
woman’s hair in the middle row of Fig. 6 and the man’s col-
lar in the top row of Fig. 7. Second, as shown in Fig. 3, our
full-body GAN has other problems not improved by Inset-
GAN: symmetry, e.g. noticeable in the hands and feet and
on outfits (the woman with a light blue shirt), and the con-
sistency of the fabric used for the clothing (the rightmost
person). Third, the generated results have limited variations
in body type and pose as discussed next in more detail. The
vast majority of our generated results have a slender body
type due to the training data distribution.

Dataset Bias and Societal Impact. Both DeepFashion
and our proprietary dataset contain biases. DeepFashion
contains a limited number of unique identities. The same
models appear in multiple images. An overwhelming ma-
jority of the images are female (around 9:1) and the range
of age, ethnicity and body shape does not represent the real
human population. As a result, models trained on it can only

Figure 11. Body Generation with CoModGAN [33]. We show
results generated by CoModGAN trained to fill a rectangular hole
covering the body in a given image. Inputs with holes are shown
in insets. We generate several results per input and show the best
looking two here. Please refer to Fig. 6 for our results on the same
input faces. We observe that CoModGAN creates seamless con-
tent, but worse visual quality compared to ours.

generate limited range of identities (mostly young white fe-
males) as shown in Fig. 8. We made our best attempt to
look for a diverse dataset and purchased one from a data
vendor in East Asia but noticed the over-representation of
young Asian females in the images. Also, many images
appear to portray slim street fashion models; as a result
the vast majority of them contain slender body type and
formal attires. Models trained on biased datasets tend to
learn biased representations of the human body. Due to the
over-representation of Asians, our results on other ethnici-
ties contain more artifacts in the face region (see the right-
most four results in Fig. 3). We encourage future research
efforts to diversify the training dataset to better serve our
diverse society. The unconditional nature of our generation
process combined with the limitation of some optimization
losses operating at a low resolution implies that our gener-
ated human outputs might not preserve the attributes in the
input image exactly. In addition, since the age distribution
in our data is almost exclusively adult humans, we are not
able to faithfully produce bodies for faces of children. Simi-
lar to other human domain generative models, our approach
can be exploited by malicious users to produce deep fakes.
However, as we have seen in the user study, even in a short
second, users identify most of our generated results as fake
compared to real human images. As we further improve the
result qualities, we hope, and encourage other researchers,
to investigate deep fake detection algorithms.

6. Conclusion
We presented InsetGAN, the first viable framework to

generate plausible-looking human images unconditionally
at 1024×1024px resolution. The main technical contribu-
tion of InsetGAN is to introduce a multi-GAN optimization
framework that jointly optimizes the latent codes of two or
more collaborative generators. In future work, we propose
to extend the multi-generator idea to 3D shape representa-
tions, such as 3D GANs or auto-regressive models based on
transformers. We also plan to demonstrate the InsetGAN
framework on other image domains and investigate coordi-
nated latent editing in the multi-GAN setup.
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